#549. 勿忘我

勿忘我

勿忘我

题目描述

宇宙虽有其起源,却没有终结——无限。

星球虽也有起源,却因其自身的力量而逐渐消亡——有限。

拥有智慧之人往往是最为愚蠢者,纵观历史便可得知这一点。

这也可以说是神给那些抵抗者们的——

最后通牒。

俯瞰身底无数的世界线,两条不同的世界线之间也许可以相互到达,但存在一个差异值。

但你并不想记住如此大量繁多的信息,事实上,大部分的信息你都不需要。最终,你选定了 nn 条世界线,并找到了其相互之间的 联系 vv。在此基础之上,你想仅保存少量的世界线间的关系,但是有一些要求:

  • nn 条世界线间可以通过这些保存的 联系 相互到达,且路径数唯一。
  • 不能存在差异值 <L< L联系,否则会出现负荷领域的既视感。
  • 不能存在差异值 >R> R联系,否则将难以摆脱世界线的收束。
  • 除此之外,你还希望差异值之和尽量小。

一句话题意:nn 个点,mm 条边,询问满足所有边权 [L,R]\in [L,R] 的最小生成森林,强制在线。

输入格式

第一行两个正整数 n,mn,m,分别表示点数和边数。

接下去 mm 行,每行三个正整数 x,y,zx,y,z,描述了一条边,连接 x,yx,y,边权为 zz

然后一行一个正整数 qq,表示询问次数。

接下去 qq 行,每行两个数 L,RL',R',记上一次询问输出的答案为 lastenslastens,则 L=max(Llastens,1),R=RlastensL=\max(L'-lastens,1),R=R'-lastens。特殊的,第一次询问时 lastenslastens00

输出格式

对于每次询问,输出一行一个正整数,表示其符合条件的最小生成森林的边权和,如果不存在则输出 00

样例

Input 1

4 7
3 4 6
1 3 9
2 1 2
3 2 9
4 1 4
3 1 5
4 3 5
4
1 10
14 17
11 19
13 14

Output 1

11
9
11
2

Input 2

3 3
3 1 3
3 1 3
3 2 4
7
9 9
3 4
10 11
13 13
5 7
4 10
7 8

Output 2

0
7
7
0
0
4
7

提示说明

对于前 0%0\% 的数据,是样例。

对于前 20%20\% 的数据,保证 n,m,q103n,m,q\le 10^3

对于前 30%30\% 的数据,保证 n,m,q104n,m,q\le 10^4

对于另外 30%30\% 的数据,保证 n,m,q105n,m,q\le 10^5,且数据随机。

对于 100%100\% 的数据,保证 n,m,q5×105,v106,L,R109n,m,q\le 5\times 10^5,v\le 10^6,L',R'\le 10^9