1 solutions
-
0
Guest MOD
-
1
首先我们处理一下哪些括号是匹配的。
W(X()X(Z()Z)X(Y()Y()Y)X()X)W,我们把括号之间的间隔标号,对于一堆匹配的括号,要求两端标的号是相同的,那么一段序列是合法的括号序列当且仅当两边的间隔标的号是相同的。那么问题就转化成有若干个标号,你要统计位置两端有多少对标号是相同的。
这个问题只要从左往右扫一下,维护一下变化量即可。
时间复杂度是 。
#include <bits/stdc++.h> #define LL long long #define LD long double #define ull unsigned long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ALL(x) (x).begin(), (x).end() #define fio ios::sync_with_stdio(false); cin.tie(0); using namespace std; const int N = 1e7 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 + 7; const double eps = 1e-8; const double PI = acos(-1); template<class T, class S> inline void add(T &a, S b) { a += b; if (a >= mod) a -= mod; } template<class T, class S> inline void sub(T &a, S b) { a -= b; if (a < 0) a += mod; } template<class T, class S> inline bool chkmax(T &a, S b) { return a < b ? a = b, true : false; } template<class T, class S> inline bool chkmin(T &a, S b) { return a > b ? a = b, true : false; } mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int n; int stk[N], top; int match[N], a[N], b[N], up[N]; int ans[N]; char s[N]; int main() { scanf("%s", s + 1); n = strlen(s + 1); top = 0; for (int i = 1; i <= n; i++) { if (s[i] == '(') { up[i] = stk[top]; stk[++top] = i; } else if (top) { match[i] = stk[top]; match[stk[top]] = i; top--; } } for (int i = 1; i <= n; i++) { if (!match[i] || s[i] == '(') continue; b[i] = b[match[i] - 1] + 1; } for (int i = n; i >= 1; i--) { if (!match[i] || s[i] == ')') continue; a[i] = a[match[i] + 1] + 1; } for (int i = 1; i <= n; i++) { if (!match[i] || s[i] == ')') continue; ans[i] = 1LL * a[i] * b[match[i]] % mod; if (up[i]) add(ans[i], ans[up[i]]); ans[match[i]] = ans[i]; } LL ret = 0; for (int i = 1; i <= n; i++) { ret += 1LL * ans[i] * i % mod; } printf("%lld\n", ret); return 0; }
- 1
Information
- ID
- 312
- Time
- 1000ms
- Memory
- 256MiB
- Difficulty
- 6
- Tags
- (None)
- # Submissions
- 33
- Accepted
- 11
- Uploaded By